Informasjonsteknologi 1 og 2 Hjelpeark — VG2/VG3

www.eksamenssett.no

Informasjonsteknologi 1 og 2 Hjelpeark

VG2 (IT1) og VG3 (IT2) — LK20

IT1: Nettverk og internett
0OSl-modellen (7 lag)

Fysisk — kabler, signaler
Datalink — MAC-adresser
Nettverk — IP-adresser, routing
Transport — TCP/UDP, porter
Sesjon — forbindelser
Presentasjon — kryptering
Applikasjon — HTTP, SMTP

Nook~wp=

TCP/IP-modellen (4 lag)

* Nettverksgrensesnitt — fysisk
* Internett - IP

» Transport — TCP/UDP

» Applikasjon — HTTP, DNS

IP-adresser

* IPv4: 32 bit, f.eks. 192.168.1.1

« IPv6: 128 bit, f.eks. 2001:db8::1

e Private: 10.x.x.x, 172.16-31.x.x,
192.168.x.x

» Loopback: 127.0.0.1 (localhost)

DNS (Domain Name System)

» Oversetter domenenavn til IP

* Hierarkisk: root — TLD — domene
» TLD: .no, .com, .org, .net

» A-record: domene — IPv4

Protokoller

* HTTP/HTTPS — web (port 80/443)
» FTP —filoverfaring (port 21)
* SMTP - e-post sending (port 25)
* SSH — sikker tilgang (port 22)
« TCP - palitelig, rekkefalge
» UDP —rask, ingen garanti
IT1: HTML og CSS
HTML-struktur
<!DOCTYPE html>
<html lang="no">
<head>
<meta charset="UTF-8">
<title>Tittel</title>
<link rel="stylesheet" href="stil.css">
</head>
<body>
<header >Topptekst </header >
<main>Hovedinnhold </main>
<footer >Bunntekst </footer>

</body >
</html>

Semantiske elementer

* <header> — topptekst

* <nav> — navigasjon

* <main> — hovedinnhold

» <article> — selvstendig innhold
* <section> — tematisk del

* <aside> — sidepanel

» <footer> — bunntekst

CSS-selektorer

p { color: blue; }

/* Klasse */
.klasse { margin: 10px; }

/* ID */
#id { padding: 20px; }

/* Kombinert x/
nav a { text-decoration: none; }

CSS Flexbox

display: flex;
justify-content: center;
align-items: center;
flex-direction: row;
gap: 10px;

}

CSS Grid
display: grid;

grid-template-columns: 1fr 2fr;
grid-gap: 20px;

Responsivt design

.container {
flex-direction: column;
}
}

IT1: Programmering
Variabler og datatyper

navn = "QOla" # string
alder = 17 # int
hoyde = 1.75 # float
aktiv = True # boolean
liste = [1, 2, 3] # list

let navn = "Ola";
const PI = 3.14;
let tall = [1, 2, 3];

Kontrollstrukturer

if alder >= 18:

print ("Voksen")
elif alder >= 13:

print ("Tenaring")
else:

print ("Barn")

For-lgkke

for i in range(5):
print (i)

While-lgkke

while betingelse:
gjgr noe

Funksjoner

return f"Hei, {navn}!"

resultat = hils("Kari")

return ‘Hei, ${navnl}!‘;

const pil = (x) => x * 2;

Lister og arrays

tall.append (6) # legg til
tall.pop () # fjern siste
len(tall) # lengde

tall[0] # fgrste element
tall[-1] # siste element

IT1: Databaser og SQL

Grunnbegreper

 Tabell —rader og kolonner
* Rad — en post/entitet

» Kolonne — et attributt

* Primeerngkkel — unik ID

* Fremmedngkkel — relasjon

SQL-sperringer

SELECT * FROM elever;

SELECT navn, alder FROM elever
WHERE alder > 16

ORDER BY navn;

-- Sette inn

INSERT INTO elever (navn, alder)
VALUES (’0la’, 17);

-- Oppdatere

UPDATE elever

SET alder = 18

WHERE navn = ’0la’;

-- Slette

DELETE FROM elever
WHERE id = 5;

JOIN

FROM elever e
INNER JOIN klasser k
ON e.klasse_id = k.id;

Aggregatfunksjoner

SELECT AVG(alder) FROM elever;
SELECT MAX(poeng) FROM resultater;
SELECT klasse, COUNT(x)

FROM elever GROUP BY klasse;

IT1: Informasjonssikkerhet
ClA-triaden

+ Konfidensialitet — kun autorisert til-
gang

* Integritet — data er korrekte

» Tilgjengelighet — systemet fungerer

Trusler

» Malware: virus, trojan, ransomware

» Phishing: falske e-poster/nettsider

» DDoS: overbelastningsangrep

» SQL-injection: ondsinnet kode i input

* Man-in-the-middle: avlytting

Beskyttelse

» Sterke passord, 2FA

« HTTPS og kryptering

* Brannmur og antivirus

» Oppdateringer og patching

» Backup og sikkerhetskopiering

Kryptering

» Symmetrisk: samme ngkkel (AES)

» Asymmetrisk: offentlig/privat (RSA)

» Hashing: enveisfunksjon (SHA-256)

IT1: Personvern og etikk
GDPR-prinsipper

- Lovlighet, rettferdighet, apenhet
 Formalsbegrensning

» Dataminimering

* Riktighet

+ Lagringsbegrensning

* Integritet og konfidensialitet
Rettigheter

* Innsyn i egne data

* Retting av feil

- Sletting (“retten til & bli glemt”)
+ Dataportabilitet

» Protest mot behandling

Etiske problemstillinger

 Overvaking vs. sikkerhet

+ Algoritmebasert diskriminering
+ Digital ulikhet

» Opphavsrett og deling

Informasjonsteknologi 1 og 2 Hjelpeark — VG2/VG3

www.eksamenssett.no

IT2: Objektorientert programmering
Klasser og objekter

def __init__(self, navn, alder):
self.navn = navn
self.alder = alder

def hils(self):
return f"Hei, jeg er {self.navn}"

elevl = Elev("0la", 17)
print (elevl.hils())

Arv (inheritance)

def __init__(self, navn):
self.navn = navn

class Student (Person):
def __init__(self, navn, skole):
super (). __init__(navn)
self.skole = skole

Innkapsling

def __init__(self, saldo):
self._saldo = saldo # protected
self.__pin = 1234 # private

def hent_saldo(self):
return self._saldo

def sett_inn(self, belgp):
if belgp > 0:
self._saldo += belgp

Polymorfisme

def lyd(self):
pass

class Hund (Dyr):
def lyd(self):
return "Voff!"

class Katt(Dyr):
def lyd(self):
return "Mjau!"

dyr = [Hund (), Katt()]
for d in dyr:
print(d.1lyd ()

IT2: Algoritmer
Sokealgoritmer

def lineart_sgk(liste, verdi):
for i, x in enumerate(liste):
if x == verdi:
return i
return -1

Binzrt sgk - 0(log n)
def binzrt_sgk(liste, verdi):
lav, hgy = 0, len(liste) - 1
while lav <= hgy:
midt = (lav + hgy) // 2
if liste[midt] == verdi:
return midt
elif liste[midt] < verdi:
lav = midt + 1
else:
hgy = midt - 1
return -1

Sorteringsalgoritmer

def boblesortering(liste):
n = len(liste)
for i in range(n):
for j in range(n-i-1):
if liste[j]l > liste[j+1]:
liste[jl, liste[j+1] = \
liste[j+1], listel[j]
return liste

Innbygget sortering - 0(n log n)
sortert = sorted(liste)
liste.sort ()

Big O-notasjon

* O(1) — konstant tid

* O(log n) — logaritmisk

* O(n) — lineaer

* O(n log n) — effektiv sortering
0O(n?) — kvadratisk

* O(2™) — eksponentiell

IT2: Datastrukturer

Stakk (Stack) — LIFO

stakk.append (1) # push
stakk.append (2)
topp = stakk.pop() # 2

Ko (Queue) - FIFO

kg = deque ()

kg .append (1) # enqueue
kg .append (2)

fgrste = kg.popleft() # 1
Dictionary / HashMap

"e001": {"navn": "Ola", "alder": 17},

"e002": {"navn": "Kari", "alder": 18}
3
print (elever ["e001"] ["navn"])
elever["e003"] = {"navn": "Per", "alder": 17}
Set (mengde)

b = {2, 3, 4}

print(a | b) # union: {1,2,3,4}
print(a & b) # snitt: {2,3}
print(a - b) # differanse: {1}

IT2: APl-er og webtjenester
REST API

* GET - hente data

* POST - opprette ny ressurs
* PUT - oppdatere ressurs

+ DELETE - slette ressurs

Hente data fra API

GET-forespgrsel

response = requests.get (
"https://api.example.com/data"

)

data = response.json()

Med parametere

params = {"q": "oslo", "limit": 10}
response = requests.get(url, params=params)
POST-foresporsel

response = requests.post(

"https://api.example.com/elever",
json=payload
)

JSON
Python til JSON
json_str = json.dumps(data)

JSON til Python
data = json.loads(json_str)

Fetch API (JavaScript)

.then(response => response.json())
.then(data => console.log(data))
.catch(error => console.error (error));
// Async/await
async function hentData() {
const response = await fetch(url);
const data = await response.json();
return data;

IT2: Systemutvikling

Utviklingsmodeller

* Fossefallsmodellen: linezer, faseinn-
delt

» Smidig (Agile): iterativ, fleksibel

» Scrum: sprinter, daglige mater

» Kanban: visualisering, flyt

Utviklingsfaser

Kravspesifikasjon

Design/planlegging

Implementering

Testing

Utrulling

Vedlikehold

Testing

+ Enhetstesting: teste enkeltfunksjoner

* Integrasjonstesting: teste samspill

» Systemtesting: teste hele systemet

» Brukertesting: teste med brukere

Versjonskontroll (Git)

2R e

git add .
git commit -m "Melding"
git push origin main
git pull

git branch ny-funksjon
git checkout ny-funksjon
git merge ny-funksjon

IT2: Kunstig intelligens

Grunnbegreper

+ Al: maskiner som simulerer intelligens

* ML: leering fra data

» Deep learning: nevrale nettverk

* Trening: lzere fra treningsdata

* Prediksjon: forutsi nye data

Typer maskinlaering

» Veiledet: merket data (klassifisering,
regresjon)

* Ikke-veiledet: umerket data (cluste-
ring)

» Forsterkende: belgnning/straff

Enkel ML i Python

LinearRegression
Tren modell
model = LinearRegression()

model.fit(X_train, y_train)

Prediker
y_pred = model.predict(X_test)

Etikk i Al

 Bias i treningsdata
 Forklarbarhet (“black box”)

» Personvern

* Ansvar ved feil

* Arbeidsplasser og automatisering
Nyttige tips

Debugging

* Les feilmeldinger noye

» Bruk print() for & sjekke verdier
+ Test sma deler av gangen
 Bruk debugger i IDE

God kodepraksis

» Beskrivende variabelnavn

» Kommenter kompleks kode

Informasjonsteknologi 1 og 2 Hjelpeark — VG2/VG3 www.eksamenssett.no

* Del opp i funksjoner O Kan skrive HTML/CSS O Forstar OOP-konsepter

* Folg navnekonvensjoner 0 Behersker grunnleggende program- [Kjenner til APl-bruk

+ Test koden din mering O Forstar sikkerhet og personvern
SiekKliste eksamen O Kan skrive SQL-sparringer

O Forstar nettverksprotokoller

www.eksamenssett.no — Informasjonsteknologi 1 og 2 — VG2/VG3 — LK20

