
Informasjonsteknologi 1 og 2 Hjelpeark – VG2/VG3 www.eksamenssett.no

Informasjonsteknologi 1 og 2 Hjelpeark
VG2 (IT1) og VG3 (IT2) — LK20

IT1: Nettverk og internett
OSI-modellen (7 lag)

1. Fysisk – kabler, signaler
2. Datalink – MAC-adresser
3. Nettverk – IP-adresser, routing
4. Transport – TCP/UDP, porter
5. Sesjon – forbindelser
6. Presentasjon – kryptering
7. Applikasjon – HTTP, SMTP

TCP/IP-modellen (4 lag)

• Nettverksgrensesnitt – fysisk
• Internett – IP
• Transport – TCP/UDP
• Applikasjon – HTTP, DNS

IP-adresser

• IPv4: 32 bit, f.eks. 192.168.1.1
• IPv6: 128 bit, f.eks. 2001:db8::1
• Private: 10.x.x.x, 172.16-31.x.x,

192.168.x.x
• Loopback: 127.0.0.1 (localhost)

DNS (Domain Name System)

• Oversetter domenenavn til IP
• Hierarkisk: root → TLD → domene
• TLD: .no, .com, .org, .net
• A-record: domene → IPv4

Protokoller

• HTTP/HTTPS – web (port 80/443)
• FTP – filoverføring (port 21)
• SMTP – e-post sending (port 25)
• SSH – sikker tilgang (port 22)
• TCP – pålitelig, rekkefølge
• UDP – rask, ingen garanti
IT1: HTML og CSS
HTML-struktur

<!DOCTYPE html >

<html lang="no">

<head >

<meta charset ="UTF -8">

<title >Tittel </title >

<link rel=" stylesheet" href="stil.css">

</head >

<body >

<header >Topptekst </header >

<main >Hovedinnhold </main >

<footer >Bunntekst </footer >

</body >

</html >

Semantiske elementer

• <header> – topptekst
• <nav> – navigasjon
• <main> – hovedinnhold
• <article> – selvstendig innhold
• <section> – tematisk del
• <aside> – sidepanel
• <footer> – bunntekst

CSS-selektorer

p { color: blue; }

/* Klasse */

.klasse { margin: 10px; }

/* ID */

#id { padding: 20px; }

/* Kombinert */

nav a { text -decoration: none; }

CSS Flexbox

display: flex;

justify -content: center;

align -items: center;

flex -direction: row;

gap: 10px;

}

CSS Grid

display: grid;

grid -template -columns: 1fr 2fr;

grid -gap: 20px;

}

Responsivt design

.container {

flex -direction: column;

}

}

IT1: Programmering
Variabler og datatyper

navn = "Ola" # string

alder = 17 # int

hoyde = 1.75 # float

aktiv = True # boolean

liste = [1, 2, 3] # list

let navn = "Ola";

const PI = 3.14;

let tall = [1, 2, 3];

Kontrollstrukturer

if alder >= 18:

print(" Voksen ")

elif alder >= 13:

print("Ten åring")

else:

print("Barn")

For -løkke

for i in range (5):

print(i)

While -løkke

while betingelse:

gjør noe

Funksjoner

return f"Hei , {navn }!"

resultat = hils("Kari")

return ‘Hei , ${navn}!‘;
}

const pil = (x) => x * 2;

Lister og arrays

tall.append (6) # legg til

tall.pop() # fjern siste

len(tall) # lengde

tall [0] # første element

tall[-1] # siste element

IT1: Databaser og SQL
Grunnbegreper

• Tabell – rader og kolonner
• Rad – en post/entitet
• Kolonne – et attributt
• Primærnøkkel – unik ID
• Fremmednøkkel – relasjon

SQL-spørringer

SELECT * FROM elever;

SELECT navn , alder FROM elever

WHERE alder > 16

ORDER BY navn;

-- Sette inn

INSERT INTO elever (navn , alder)

VALUES (’Ola ’, 17);

-- Oppdatere

UPDATE elever

SET alder = 18

WHERE navn = ’Ola ’;

-- Slette

DELETE FROM elever

WHERE id = 5;

JOIN

FROM elever e

INNER JOIN klasser k

ON e.klasse_id = k.id;

Aggregatfunksjoner

SELECT AVG(alder) FROM elever;

SELECT MAX(poeng) FROM resultater;

SELECT klasse , COUNT (*)

FROM elever GROUP BY klasse;

IT1: Informasjonssikkerhet
CIA-triaden

• Konfidensialitet – kun autorisert til-
gang

• Integritet – data er korrekte
• Tilgjengelighet – systemet fungerer
Trusler

• Malware: virus, trojan, ransomware
• Phishing: falske e-poster/nettsider
• DDoS: overbelastningsangrep
• SQL-injection: ondsinnet kode i input
• Man-in-the-middle: avlytting
Beskyttelse

• Sterke passord, 2FA
• HTTPS og kryptering
• Brannmur og antivirus
• Oppdateringer og patching
• Backup og sikkerhetskopiering
Kryptering

• Symmetrisk: samme nøkkel (AES)
• Asymmetrisk: offentlig/privat (RSA)
• Hashing: enveisfunksjon (SHA-256)
IT1: Personvern og etikk
GDPR-prinsipper

• Lovlighet, rettferdighet, åpenhet
• Formålsbegrensning
• Dataminimering
• Riktighet
• Lagringsbegrensning
• Integritet og konfidensialitet
Rettigheter

• Innsyn i egne data
• Retting av feil
• Sletting (“retten til å bli glemt”)
• Dataportabilitet
• Protest mot behandling
Etiske problemstillinger

• Overvåking vs. sikkerhet
• Algoritmebasert diskriminering
• Digital ulikhet
• Opphavsrett og deling

1

Informasjonsteknologi 1 og 2 Hjelpeark – VG2/VG3 www.eksamenssett.no

IT2: Objektorientert programmering
Klasser og objekter

def __init__(self , navn , alder):

self.navn = navn

self.alder = alder

def hils(self):

return f"Hei , jeg er {self.navn}"

elev1 = Elev("Ola", 17)

print(elev1.hils())

Arv (inheritance)

def __init__(self , navn):

self.navn = navn

class Student(Person):

def __init__(self , navn , skole):

super().__init__(navn)

self.skole = skole

Innkapsling

def __init__(self , saldo):

self._saldo = saldo # protected

self.__pin = 1234 # private

def hent_saldo(self):

return self._saldo

def sett_inn(self , beløp):

if beløp > 0:

self._saldo += beløp

Polymorfisme

def lyd(self):

pass

class Hund(Dyr):

def lyd(self):

return "Voff!"

class Katt(Dyr):

def lyd(self):

return "Mjau!"

dyr = [Hund(), Katt()]

for d in dyr:

print(d.lyd())

IT2: Algoritmer
Søkealgoritmer

def lineært_søk(liste , verdi):

for i, x in enumerate(liste):

if x == verdi:

return i

return -1

Binært søk - O(log n)

def binært_søk(liste , verdi):

lav , høy = 0, len(liste) - 1

while lav <= høy:

midt = (lav + høy) // 2

if liste[midt] == verdi:

return midt

elif liste[midt] < verdi:

lav = midt + 1

else:

høy = midt - 1

return -1

Sorteringsalgoritmer

def boblesortering(liste):

n = len(liste)

for i in range(n):

for j in range(n-i-1):

if liste[j] > liste[j+1]:

liste[j], liste[j+1] = \

liste[j+1], liste[j]

return liste

Innbygget sortering - O(n log n)

sortert = sorted(liste)

liste.sort()

Big O-notasjon

• O(1) – konstant tid
• O(log n) – logaritmisk
• O(n) – lineær
• O(n log n) – effektiv sortering
• O(n2) – kvadratisk
• O(2n) – eksponentiell
IT2: Datastrukturer
Stakk (Stack) – LIFO

stakk.append (1) # push

stakk.append (2)

topp = stakk.pop() # 2

Kø (Queue) – FIFO

kø = deque()

kø.append (1) # enqueue

kø.append (2)

første = kø.popleft () # 1

Dictionary / HashMap

"e001": {"navn": "Ola", "alder": 17},

"e002": {"navn": "Kari", "alder": 18}

}

print(elever ["e001 "][" navn "])

elever ["e003"] = {"navn": "Per", "alder": 17}

Set (mengde)

b = {2, 3, 4}

print(a | b) # union: {1,2,3,4}

print(a & b) # snitt: {2,3}

print(a - b) # differanse: {1}

IT2: API-er og webtjenester
REST API

• GET – hente data
• POST – opprette ny ressurs
• PUT – oppdatere ressurs
• DELETE – slette ressurs

Hente data fra API

GET -forespørsel

response = requests.get(

"https :// api.example.com/data"

)

data = response.json()

Med parametere

params = {"q": "oslo", "limit": 10}

response = requests.get(url , params=params)

POST-forespørsel

response = requests.post(

"https :// api.example.com/elever",

json=payload

)

JSON

Python til JSON

json_str = json.dumps(data)

JSON til Python

data = json.loads(json_str)

Fetch API (JavaScript)

.then(response => response.json())

.then(data => console.log(data))

.catch(error => console.error(error));

// Async/await

async function hentData () {

const response = await fetch(url);

const data = await response.json();

return data;

}

IT2: Systemutvikling
Utviklingsmodeller

• Fossefallsmodellen: lineær, faseinn-
delt

• Smidig (Agile): iterativ, fleksibel
• Scrum: sprinter, daglige møter
• Kanban: visualisering, flyt
Utviklingsfaser

1. Kravspesifikasjon
2. Design/planlegging
3. Implementering
4. Testing
5. Utrulling
6. Vedlikehold
Testing

• Enhetstesting: teste enkeltfunksjoner
• Integrasjonstesting: teste samspill
• Systemtesting: teste hele systemet
• Brukertesting: teste med brukere
Versjonskontroll (Git)

git add .

git commit -m "Melding"

git push origin main

git pull

git branch ny-funksjon

git checkout ny-funksjon

git merge ny -funksjon

IT2: Kunstig intelligens
Grunnbegreper

• AI: maskiner som simulerer intelligens
• ML: læring fra data
• Deep learning: nevrale nettverk
• Trening: lære fra treningsdata
• Prediksjon: forutsi nye data
Typer maskinlæring

• Veiledet: merket data (klassifisering,
regresjon)

• Ikke-veiledet: umerket data (cluste-
ring)

• Forsterkende: belønning/straff
Enkel ML i Python

LinearRegression

Tren modell

model = LinearRegression ()

model.fit(X_train , y_train)

Prediker

y_pred = model.predict(X_test)

Etikk i AI

• Bias i treningsdata
• Forklarbarhet (“black box”)
• Personvern
• Ansvar ved feil
• Arbeidsplasser og automatisering
Nyttige tips
Debugging

• Les feilmeldinger nøye
• Bruk print() for å sjekke verdier
• Test små deler av gangen
• Bruk debugger i IDE
God kodepraksis

• Beskrivende variabelnavn
• Kommenter kompleks kode

2

Informasjonsteknologi 1 og 2 Hjelpeark – VG2/VG3 www.eksamenssett.no

• Del opp i funksjoner
• Følg navnekonvensjoner
• Test koden din
Sjekkliste eksamen

□ Forstår nettverksprotokoller

□ Kan skrive HTML/CSS
□ Behersker grunnleggende program-

mering
□ Kan skrive SQL-spørringer

□ Forstår OOP-konsepter
□ Kjenner til API-bruk
□ Forstår sikkerhet og personvern

www.eksamenssett.no — Informasjonsteknologi 1 og 2 — VG2/VG3 — LK20

3

